Sains Malaysiana 54(4)(2025): 1025-1036

http://doi.org/10.17576/jsm-2025-5404-05

 

Profiling the Non-Targeted Proteins in Sunda Porcupine (Hystrix javanica) Quills to Identify the Wound Healing Potential Substance

(Memprofilkan Protein Tidak Bersasar pada Duri Landak Jawa (Hystrix javanica) untuk Mengenal Pasti Bahan Potensi Penyembuhan Luka)

 

MUHAMMAD DIRGA GIFARDI1,2, LINA NOVIYANTI SUTARDI3, WARTIKA ROSA FARIDA4, ANDHIKA YUDHA PRAWIRA4, TULUS MAULANA4, MAULIDA MAZAYA5 & SRIHADI AGUNGPRIYONO2,*

 

1Veterinary Medicine Study Program, Faculty of Medicine, Hasanuddin University, Makassar, 90241, Indonesia

2Division of Anatomy Histology Embryology, School of Veterinary Medicine and Biomedical Science, IPB University, Bogor, 16680, Indonesia

3Division of Veterinary Pharmacy, School of Veterinary Medicine and Biomedical Science, IPB University, Bogor, 16680, Indonesia

4Research Center for Applied Zoology, Research Organization for Life Science and Environment, National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia

5Research Center for Computation, Research Organization for Electronic and Informatic, National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia

 

Received: 7 October 2024/Accepted: 16 December 2024

 

Abstract

Sunda porcupine (Hystrix javanica) has quill as the main appendage of its skin and used as a means of self-defence against predators. In some regions of Indonesia, roasted porcupine quills are employed as a traditional remedy for dental pain and wound healing. This treatment is likely to use protein and other compounds in the quills that interact directly with tissues to produce pharmacological effects. The aim of this study was profiling the protein composition in the porcupine quills in order to screening the potential substances which helps improve wound healing. Natural detached porcupine quills were collected and extracted for total protein. The protein composition was identified using SDS-PAGE and LC-MS/MS instrument. The data were analyzed using bioinformatics approach. This study demonstrates that porcupine quills have a soluble protein concentration of 2.11 ± 1.14 mg/mL composed mainly of proteins with molecular weights of 245 kDa and 60 kDa. LC-MS/MS utilisation showed the presence of 19 suspected proteins, including keratin 1, 2, 5, 6a, 8, 10, 14, 17, and 84. Bioinformatic analysis showed that three proteins with more than 1 unique peptide were potentially affecting wound healing, which were Keratin Type II, cytoskeletal 1 (Keratin 1); Keratin Type II, cytoskeletal 6a (Keratin 6a); and Annexin. The results of study provide scientific evidence regarding the potential substance of porcupine quills to help improve wound healing.

Keywords: Annexin; bioinformatic; keratin; proteomic; wound healing

Abstrak

Landak Jawa (Hystrix javanica) mempunyai duri sebagai pelengkap utama kulitnya dan digunakan sebagai alat pertahanan diri terhadap pemangsa. Di sesetengah kawasan di Indonesia, duri landak panggang digunakan sebagai ubat tradisi untuk sakit gigi dan penyembuhan luka. Rawatan ini berkemungkinan menggunakan protein dan sebatian lain dalam duri yang berinteraksi secara langsung dengan tisu untuk menghasilkan kesan farmakologi. Matlamat kajian ini adalah memprofilkan komposisi protein pada duri landak untuk menyaring bahan berpotensi yang membantu meningkatkan penyembuhan luka. Duri landak gugur secara semula jadi dikumpul dan diekstrak untuk jumlah protein. Komposisi protein dikenal pasti menggunakan instrumen SDS-PAGE dan LC-MS/MS. Data dianalisis menggunakan pendekatan bioinformatik. Kajian ini menunjukkan bahawa duri landak mempunyai kepekatan protein larut sebanyak 2.11 ± 1.14 mg/mL yang terdiri terutamanya daripada protein dengan berat molekul 245 kDa dan 60 kDa. Penggunaan LC-MS/MS menunjukkan kehadiran 19 protein yang disyaki, termasuk keratin 1, 2, 5, 6a, 8, 10, 14, 17 dan 84. Analisis bioinformatik mendedahkan bahawa tiga protein dengan lebih daripada 1 peptida unik berpotensi menjejaskan penyembuhan luka, iaitu Keratin Tipe II, sitoskeletal (Keratin 1); Keratin Jenis II, sitoskeletal 6a (Keratin 6a) dan Annexin. Hasil kajian memberikan bukti saintifik mengenai potensi bahan daripada duri landak untuk membantu meningkatkan penyembuhan luka.

Kata kunci: Annexin; bioinformatik; keratin; penyembuhan luka; proteomik

REFERENCES

Akers, R.M. & Denbow, D.M. 2013. Anatomy and Physiology of Domestic Animals. New York: John Wiley & Sons.

Bragulla, H.H. & Homberger, D.G. 2009. Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. Journal of Anatomy 214(4): 516-559.

Burnett, L.R., Rahmany, M.B., Richter, J.R., Aboushwareb, T.A., Eberli, D., Ward, C.L., Orlando, G.G., Hantgan, R.R. & Van Dyke, M.E. 2013. Hemostatic properties and the role of cell receptor recognition in human hair keratin protein hydrogels. Biomaterials 34(11): 2632-2640.

Chan, J.K.L., Yuen, D., Too, P.H., Sun, Y., Willard, B., Man, D. & Tam, C. 2018. Keratin 6a reorganization for ubiquitin–proteasomal processing is a direct antimicrobial response. J. Cell Biol. 217(2): 731-744.

Chmel, L. & Buchvald, J. 1970. Ecology and transmission of Microsporum gypseum from soil to man. Sabouraudia 8(2): 149-156.

Dhouailly, D., Xu, C., Manabe, M., Schermer, A. & Sun, T.T. 1989. Expression of hair-related keratins in a soft epithelium: Subpopulations of human and mouse dorsal tongue keratinocytes express keratin markers for hair-, skin- and esophageal-types of differentiation. Exp. Cell Res. 181(1): 141-158.

Dyrlund, T.F., Poulsen, E.T., Scavenius, C., Nikolajsen, C.L., Thøgersen, I.B., Vorum, H. & Enghild, J.J. 2012. Human cornea proteome: Identification and quantitation of the proteins of the three main layers including epithelium, stroma, and endothelium. J. Proteome Res. 11(8): 4231-4239.

Ehrlich, F., Fischer, H., Langbein, L., Praetzel-Wunder, S., Ebner, B., Figlak, K., Weissenbacher, A., Sipos, W., Tschachler, E. & Eckhart, L. 2019. Differential evolution of the epidermal keratin cytoskeleton in terrestrial and aquatic mammals. Molecular Biology and Evolution 36(2): 328-340.

Fatchiyah, Arumingtyas, E.L., Widyarti, S. & Rahayu, S. 2011. Biologi Molekular: Prinsip Dasar Analisis. Jakarta: Erlangga.

Gerke, V. & Moss, S.E. 2002. Annexins: From structure to function. Physiol. Rev. 82(2): 331-371.

Ginter, G. 2009. Ecology, epidemiology and clinical symptomatology of infections due to Microsporum gypseum. Mycoses 32(10): 531-535.

Goodman, J.K., Zampronio, C.G., Jones, A.M.E. & Hernandez-Fernaud, J.R. 2018. Updates of the in-gel digestion method for protein analysis by mass spectrometry. Proteomics 18(23): e1800236.

Grill, D., Matos, A.L.L., de Vries, W.C., Kudruk, S., Heflik, M., Dörner, W., Mootz, H.D., Jan Ravoo, B., Galla, H.J. & Gerke, V. 2018. Bridging of membrane surfaces by annexin A2. Sci. Rep. 8(1): 14662.

Han, M., Fan, L., Qin, Z., Lavingia, B. & Stastny, P. 2013. Alleles of keratin 1 in families and populations. Hum. Immunol. 74: 1453-1458.

Heid, H.W., Moll, I. & Franke, W.W. 1988. Patterns of expression of trichocytic and epithelial cytokeratins in mammalian tissues. I. Human and bovine hair follicles. Differentiation 37(2): 137-157.

Inayah, N., Farida, W.R. & Purwaningsih, E. 2020. Microstructure of quills in porcupine Hystrix javanica (F. Cuvier, 1823). Jurnal Biologi Indonesia 16(1): 81-88.

Kakati, L.N. & Daulo, V. 2002. Indigenous knowledge system of zootherapeutic use by Chakhesang tribe of Nagaland, India. J. Hum. Ecol. 13: 419-423.

Karthikeyan, R., Balaji, S. & Sehgal, P.K. 2007. Industrial applications of keratins–A review. Journal of Scientific & Industrial Research 66: 710-715.

Krisyanto, R.D., Ardian, H. & Anwari, M.S. 2019. Kajian etnozoologi untuk pengobatan Suku Dayak Sebaruk di Desa Setunggul Kecamatan Silat Hilir Kabupaten Kapuas Hulu. Jurnal Hutan Lestari 7: 1282-1289.

Lee, H., Noh, K., Lee, S.C., Kwon, I.K., Han, D.W., Lee, I.S. & Hwang, Y.S. 2014. Human hair keratin and its-based biomaterials for biomedical applications. Tissue Engineering and Regenerative Medicine 11: 255-265.

Lim, H.I. & Hajjar, K.A. 2012. Annexin A2 in fibrinolysis, inflammation and fibrosis. Int. J. Mol. Sci. 22(13): 6836.

Prawira, A.Y., Farida, W.R., Darusman, H.S., Novelina, S. & Agungpriyono, S. 2022. Fatty acid composition profiling in the dorsal skin of Sunda porcupine (Hystrix javanica). Journal of Veterinary Medical Science 84(9): 1230-1236.

Prawira, A.Y., Novelina, S., Darusman, H.S., Farida, W.R. & Agungpriyono, S. 2018. The dorsal skin structure contributes to the surface bacteria populations of Sunda Porcupine (Hystrix javanica). Anatomia, Histologia, Embryologia 47(6): 591-598.

Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B. & Ideker, T. 2003. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research 13(11): 2498-2504.

Stachniuk, A., Sumara, A., Montowska, M. & Fornal, E. 2021. Peptide markers for distinguishing guinea fowl meat from that of other species using liquid chromatography–mass spectrometry. Food Chemistry 345(2): 128810. https://doi.org/10.1016/j.foodchem.2020.128810

Strnad, P., Usachov, V., Debes, C., Gräter, F., Parry, D.A. & Omary, M.B. 2011. Unique amino acid signatures that are evolutionarily conserved distinguish simple-type, epidermal and hair keratins. Journal of Cell Science 124(24): 4221-4232.

Sun, Z., Chen, X., Ma, X., Cui, X., Yi, Z. & Li, X. 2018. Cellulose/keratin–catechin nanocomposite hydrogel for wound hemostasis. Journal of Materials Chemistry B 6(38): 6133-6141.

Thomas, A., Harland, D.P., Clerens, S., Deb-Choudhury, S., Vernon, J.A., Krsinic, G.K., Walls, R.J., Cornellison, C.D., Plowman, J.E. & Dyer, J.M. 2012. Interspecies comparison of morphology, ultrastructure and proteome of mammalian keratin fibres of similar diameter. J. Agric. Food Chem. 60: 2434-2446.

Wang, F., Chen, S., Liu, H.B., Parent, C.A. & Coulombe, P.A. 2018. Keratin 6 regulates collective keratinocyte migration by altering cell–cell and cell–matrix adhesion. J. Cell Biol. 217: 4314-4330.

Wang, K., Xu, Y., Huang, H., Peng, D., Chen, J., Li, P. & Du, B. 2024. Porcupine quills keratin peptides induces G0/G1 cell cycle arrest and apoptosis via p53/p21 pathway and caspase cascade reaction in MCF‐7 breast cancer cells. Journal of the Science of Food and Agriculture 104(3): 1741-1755.

Wilson, M.R. & Tait, R.C. 2014. Hemostasis and anticoagulants. In Handbook of Pharmacogenomics and Stratified Medicine, edited by Padmanabhan, S. Massachusetts: Academic Press.

Yan, R.R., Gong, J.S., Su, C., Liu, Y.L., Qian, J.Y., Xu, Z.H. & Shi, J.S. 2022. Preparation and applications of keratin biomaterials from natural keratin wastes. Applied Microbiology and Biotechnology 106(7): 2349-2366.

Yang, K.C., Huang, L.P., Huang, M.C., Thyparambil, A.A. & Wei, Y. 2020. Effect of thermal treatments on the structural change and the hemostatic property of hair extracted proteins. Colloids and Surfaces B: Biointerfaces 190: 110951.

Yu, J., Yu, D.W., Checkla, D.M., Freedberg, I.M. & Bertolino, A.P. 1993. Human hair keratins. Journal of Investigation Dermatology 101: 56-59.

Van Weers, D.J. 1983. Specific distinction in Old World porcupines. Der Zoologische Garten Jena 53: 226-232.

 

*Corresponding author; email: ysrihadi@apps.ipb.ac.id

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next