Sains Malaysiana 54(4)(2025):
1025-1036
http://doi.org/10.17576/jsm-2025-5404-05
Profiling the Non-Targeted Proteins
in Sunda Porcupine (Hystrix javanica) Quills to Identify the Wound
Healing Potential Substance
(Memprofilkan Protein Tidak Bersasar
pada Duri Landak Jawa (Hystrix javanica) untuk Mengenal Pasti Bahan
Potensi Penyembuhan Luka)
MUHAMMAD DIRGA GIFARDI1,2, LINA
NOVIYANTI SUTARDI3, WARTIKA ROSA FARIDA4, ANDHIKA YUDHA
PRAWIRA4, TULUS MAULANA4, MAULIDA MAZAYA5 & SRIHADI AGUNGPRIYONO2,*
1Veterinary
Medicine Study Program, Faculty of Medicine, Hasanuddin University, Makassar,
90241, Indonesia
2Division
of Anatomy Histology Embryology, School of Veterinary Medicine and Biomedical
Science, IPB University, Bogor, 16680, Indonesia
3Division
of Veterinary Pharmacy, School of Veterinary Medicine and Biomedical Science,
IPB University, Bogor, 16680, Indonesia
4Research
Center for Applied Zoology, Research Organization for Life Science and Environment,
National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia
5Research
Center for Computation, Research Organization for Electronic and Informatic,
National Research and Innovation Agency (BRIN), Cibinong, 16911, Indonesia
Received:
7 October 2024/Accepted: 16 December 2024
Abstract
Sunda porcupine (Hystrix javanica) has quill as
the main appendage of its skin and used as a means of self-defence
against predators. In some regions of Indonesia, roasted porcupine quills are
employed as a traditional remedy for dental pain and wound healing. This
treatment is likely to use protein and other compounds in the quills that
interact directly with tissues to produce pharmacological effects. The aim of
this study was profiling the protein composition in the porcupine quills in
order to screening the potential substances which helps improve wound healing. Natural detached porcupine quills were collected and
extracted for total protein. The protein composition was identified using
SDS-PAGE and LC-MS/MS instrument. The data were analyzed using bioinformatics
approach. This study demonstrates that porcupine quills have a soluble
protein concentration of 2.11 ± 1.14 mg/mL composed mainly of proteins with
molecular weights of 245 kDa and 60 kDa. LC-MS/MS utilisation showed the
presence of 19 suspected proteins, including keratin 1, 2, 5, 6a, 8, 10, 14,
17, and 84. Bioinformatic analysis showed that three proteins with more than 1
unique peptide were potentially affecting wound healing, which were Keratin
Type II, cytoskeletal 1 (Keratin 1); Keratin Type II, cytoskeletal 6a (Keratin
6a); and Annexin. The results of study provide scientific evidence regarding
the potential substance of porcupine quills to help improve wound healing.
Keywords:
Annexin; bioinformatic; keratin; proteomic; wound healing
Abstrak
Landak
Jawa (Hystrix javanica) mempunyai duri sebagai pelengkap utama kulitnya
dan digunakan sebagai alat pertahanan diri terhadap pemangsa. Di sesetengah
kawasan di Indonesia, duri landak panggang digunakan sebagai ubat tradisi untuk
sakit gigi dan penyembuhan luka. Rawatan ini berkemungkinan menggunakan protein
dan sebatian lain dalam duri yang berinteraksi secara langsung dengan tisu
untuk menghasilkan kesan farmakologi. Matlamat kajian ini adalah memprofilkan
komposisi protein pada duri landak untuk menyaring bahan berpotensi yang
membantu meningkatkan penyembuhan luka. Duri landak gugur secara semula jadi
dikumpul dan diekstrak untuk jumlah protein. Komposisi protein dikenal pasti
menggunakan instrumen SDS-PAGE dan LC-MS/MS. Data dianalisis menggunakan
pendekatan bioinformatik. Kajian ini menunjukkan bahawa duri landak mempunyai
kepekatan protein larut sebanyak 2.11 ± 1.14 mg/mL yang terdiri terutamanya
daripada protein dengan berat molekul 245 kDa dan 60 kDa. Penggunaan LC-MS/MS
menunjukkan kehadiran 19 protein yang disyaki, termasuk keratin 1, 2, 5, 6a, 8,
10, 14, 17 dan 84. Analisis bioinformatik mendedahkan bahawa tiga protein
dengan lebih daripada 1 peptida unik berpotensi menjejaskan penyembuhan luka,
iaitu Keratin Tipe II, sitoskeletal (Keratin 1); Keratin Jenis II, sitoskeletal
6a (Keratin 6a) dan Annexin. Hasil kajian memberikan bukti saintifik mengenai
potensi bahan daripada duri landak untuk membantu meningkatkan penyembuhan
luka.
Kata
kunci: Annexin; bioinformatik; keratin; penyembuhan luka; proteomik
REFERENCES
Akers, R.M. & Denbow, D.M. 2013. Anatomy and Physiology
of Domestic Animals. New York: John Wiley & Sons.
Bragulla, H.H. & Homberger, D.G. 2009. Structure and
functions of keratin proteins in simple, stratified, keratinized and cornified
epithelia. Journal of Anatomy 214(4): 516-559.
Burnett, L.R., Rahmany, M.B., Richter, J.R., Aboushwareb,
T.A., Eberli, D., Ward, C.L., Orlando, G.G., Hantgan, R.R. & Van Dyke, M.E.
2013. Hemostatic properties and the role of cell receptor recognition in human
hair keratin protein hydrogels. Biomaterials 34(11):
2632-2640.
Chan, J.K.L., Yuen, D., Too, P.H., Sun, Y., Willard, B., Man,
D. & Tam, C. 2018. Keratin 6a reorganization for ubiquitin–proteasomal
processing is a direct antimicrobial response. J. Cell Biol. 217(2): 731-744.
Chmel, L. & Buchvald, J. 1970. Ecology and transmission
of Microsporum gypseum from soil to man. Sabouraudia 8(2): 149-156.
Dhouailly, D., Xu, C., Manabe, M., Schermer, A. & Sun, T.T.
1989. Expression of hair-related keratins in a soft epithelium: Subpopulations
of human and mouse dorsal tongue keratinocytes express keratin markers for
hair-, skin- and esophageal-types of differentiation. Exp. Cell Res. 181(1):
141-158.
Dyrlund, T.F., Poulsen, E.T., Scavenius, C., Nikolajsen, C.L.,
Thøgersen, I.B., Vorum, H. & Enghild, J.J. 2012. Human cornea proteome:
Identification and quantitation of the proteins of the three main layers
including epithelium, stroma, and endothelium. J. Proteome Res. 11(8):
4231-4239.
Ehrlich, F., Fischer, H., Langbein, L., Praetzel-Wunder, S.,
Ebner, B., Figlak, K., Weissenbacher, A., Sipos, W., Tschachler, E. & Eckhart, L.
2019. Differential evolution of the epidermal keratin cytoskeleton in
terrestrial and aquatic mammals. Molecular Biology and Evolution 36(2):
328-340.
Fatchiyah, Arumingtyas, E.L., Widyarti, S. & Rahayu, S. 2011. Biologi Molekular: Prinsip Dasar Analisis. Jakarta: Erlangga.
Gerke, V. & Moss, S.E. 2002. Annexins: From structure to
function. Physiol. Rev. 82(2): 331-371.
Ginter, G. 2009. Ecology, epidemiology and clinical
symptomatology of infections due to Microsporum gypseum. Mycoses 32(10):
531-535.
Goodman, J.K., Zampronio, C.G., Jones, A.M.E. &
Hernandez-Fernaud, J.R. 2018. Updates of the in-gel digestion method for
protein analysis by mass spectrometry. Proteomics 18(23): e1800236.
Grill, D., Matos, A.L.L., de Vries, W.C., Kudruk, S., Heflik,
M., Dörner, W., Mootz, H.D., Jan Ravoo, B., Galla, H.J. & Gerke, V. 2018. Bridging
of membrane surfaces by annexin A2. Sci. Rep. 8(1): 14662.
Han, M., Fan, L., Qin, Z., Lavingia, B. & Stastny, P.
2013. Alleles of keratin 1 in families and populations. Hum. Immunol. 74: 1453-1458.
Heid, H.W., Moll, I. & Franke, W.W. 1988. Patterns of
expression of trichocytic and epithelial cytokeratins in mammalian tissues. I.
Human and bovine hair follicles. Differentiation 37(2):
137-157.
Inayah, N., Farida, W.R. & Purwaningsih, E. 2020. Microstructure
of quills in porcupine Hystrix javanica (F. Cuvier, 1823). Jurnal
Biologi Indonesia 16(1): 81-88.
Kakati, L.N. & Daulo, V. 2002. Indigenous knowledge
system of zootherapeutic use by Chakhesang tribe of Nagaland, India. J. Hum.
Ecol. 13: 419-423.
Karthikeyan, R., Balaji, S. & Sehgal, P.K. 2007.
Industrial applications of keratins–A review. Journal of Scientific &
Industrial Research 66: 710-715.
Krisyanto, R.D., Ardian, H. & Anwari, M.S. 2019. Kajian etnozoologi untuk
pengobatan Suku Dayak Sebaruk di Desa Setunggul Kecamatan Silat Hilir Kabupaten
Kapuas Hulu. Jurnal Hutan Lestari 7: 1282-1289.
Lee, H., Noh, K., Lee, S.C., Kwon, I.K., Han, D.W., Lee, I.S.
& Hwang, Y.S. 2014. Human hair keratin and its-based biomaterials for
biomedical applications. Tissue Engineering and Regenerative Medicine 11:
255-265.
Lim, H.I. & Hajjar, K.A. 2012. Annexin A2 in
fibrinolysis, inflammation and fibrosis. Int. J. Mol. Sci. 22(13):
6836.
Prawira, A.Y., Farida, W.R., Darusman, H.S., Novelina, S.
& Agungpriyono, S. 2022. Fatty acid composition profiling in the dorsal
skin of Sunda porcupine (Hystrix javanica). Journal of
Veterinary Medical Science 84(9): 1230-1236.
Prawira, A.Y., Novelina, S., Darusman, H.S., Farida, W.R.
& Agungpriyono, S. 2018. The dorsal skin structure contributes to the
surface bacteria populations of Sunda Porcupine (Hystrix javanica). Anatomia,
Histologia, Embryologia 47(6): 591-598.
Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang,
J.T., Ramage, D., Amin, N., Schwikowski, B. & Ideker, T. 2003. Cytoscape: A
software environment for integrated models of biomolecular interaction
networks. Genome Research 13(11): 2498-2504.
Stachniuk, A., Sumara, A., Montowska, M. & Fornal, E.
2021. Peptide markers for distinguishing guinea fowl meat from that of other
species using liquid chromatography–mass spectrometry. Food Chemistry 345(2): 128810. https://doi.org/10.1016/j.foodchem.2020.128810
Strnad, P., Usachov, V., Debes, C., Gräter, F., Parry, D.A.
& Omary, M.B. 2011. Unique amino acid signatures that are evolutionarily
conserved distinguish simple-type, epidermal and hair keratins. Journal
of Cell Science 124(24): 4221-4232.
Sun, Z., Chen, X., Ma, X., Cui, X., Yi, Z. & Li, X. 2018.
Cellulose/keratin–catechin nanocomposite hydrogel for wound hemostasis. Journal
of Materials Chemistry B 6(38): 6133-6141.
Thomas, A., Harland, D.P., Clerens, S., Deb-Choudhury, S.,
Vernon, J.A., Krsinic, G.K., Walls, R.J., Cornellison, C.D., Plowman, J.E.
& Dyer, J.M. 2012. Interspecies comparison of morphology, ultrastructure
and proteome of mammalian keratin fibres of similar diameter. J. Agric. Food
Chem. 60: 2434-2446.
Wang, F., Chen, S., Liu, H.B., Parent, C.A. & Coulombe, P.A.
2018. Keratin 6 regulates collective keratinocyte migration by altering
cell–cell and cell–matrix adhesion. J. Cell Biol. 217: 4314-4330.
Wang, K., Xu, Y., Huang, H., Peng, D., Chen, J., Li, P. &
Du, B. 2024. Porcupine quills keratin peptides induces G0/G1 cell cycle arrest
and apoptosis via p53/p21 pathway and caspase cascade reaction in MCF‐7
breast cancer cells. Journal of the Science of Food and Agriculture 104(3):
1741-1755.
Wilson, M.R. & Tait, R.C. 2014. Hemostasis and anticoagulants.
In Handbook of Pharmacogenomics and Stratified Medicine, edited by
Padmanabhan, S. Massachusetts: Academic Press.
Yan, R.R., Gong, J.S., Su, C., Liu, Y.L., Qian, J.Y., Xu,
Z.H. & Shi, J.S. 2022. Preparation and applications of keratin biomaterials
from natural keratin wastes. Applied Microbiology and Biotechnology 106(7):
2349-2366.
Yang, K.C., Huang, L.P., Huang, M.C., Thyparambil, A.A. &
Wei, Y. 2020. Effect of thermal treatments on the structural change and the hemostatic
property of hair extracted proteins. Colloids and Surfaces B:
Biointerfaces 190: 110951.
Yu, J., Yu, D.W., Checkla, D.M., Freedberg, I.M. &
Bertolino, A.P. 1993. Human hair keratins. Journal of Investigation
Dermatology 101: 56-59.
Van Weers, D.J. 1983. Specific distinction in Old World
porcupines. Der Zoologische Garten Jena 53: 226-232.
*Corresponding
author; email: ysrihadi@apps.ipb.ac.id
|